[1] 刘海江, 张恒, 汪乾, 等. 基于聚类的航天器多余物粒径特征识别方法[J]. 航天器环境工程, 2022, 39(1): 111-118 doi:  10.12126/see.2022.01.016

LIU H J, ZHAN H, WANG Q, et al. A cluster-based method for identifying the feature of particle size for spacecraft remnant[J]. Spacecraft Environment Engineering, 2022, 39(1): 111-118 doi:  10.12126/see.2022.01.016
[2] HOWARD R M. Principles of random signal analysis and low noise design: the power spectral density and its application[M]. New York: John Wiley & Sons Inc, 2002: 120-135
[3] 张龙. 星载电源多余物检测系统的研究[D]. 哈尔滨: 哈尔滨工业大学, 2010: 24-44
[4] 乌英嘎. 星载电子设备活动多余物识别方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2011: 27-48
[5] 孟偲, 李阳刚, 张国强, 等. 基于支持向量机的飞行器多余物信号识别[J]. 北京航空航天大学学报, 2020, 46(3): 488-495 doi:  10.13700/j.bh.1001-5965.2019.0266

MENG C, LI Y G, ZHANG G Q, et al. Signal recognition of loose particles inside aerobat based on support vector machine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 488-495 doi:  10.13700/j.bh.1001-5965.2019.0266
[6] ZHAI G F, CHEN J B, LI C, et al. Pattern recognition approach to identify loose particle material based on modified MFCC and HMMs[J]. Neurocomputing, 2015, 155: 135-145 doi:  10.1016/j.neucom.2014.12.039
[7] ZHAI G F, CHEN J B, WANG S J, et al. Material identification of loose particle in sealed electronic devices using PCA and SVM[J]. Neurocomputing, 2015, 148: 222-228 doi:  10.1016/j.neucom.2013.10.043
[8] 燕会臻. 密封继电器多余物材质识别技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 39-50
[9] 翟国富, 王世成, 王淑娟. 基于小波变换的航天继电器多余物材质分类[J]. 电工技术学, 2009, 24(5): 52-59

ZHAI G F, WANG S C, WANG S J. Classification of remainder material for aerospace relay based on wavelet transform[J]. Transactions of China Electrotechnical Society, 2009, 24(5): 52-59
[10] 陈金豹. 密封电子设备多余物检测的信号特征识别与置信度评价[D]. 哈尔滨: 哈尔滨工业大学, 2015: 64-89
[11] 陆振波, 章新华, 朱进. 基于MFCC的舰船辐射噪声特征提取[J]. 舰船科学技术, 2004, 26(2): 51-54

LU Z B, ZHANG X H, ZHU J. Feature extraction of ship-radiated noise based on Mel frequency cepstrum coefficients[J]. Ship Science and Technology, 2004, 26(2): 51-54
[12] 张震, 王化清. 语音信号特征提取中Mel倒谱系MFCC的改进算法[J]. 计算机工程与应用, 2008, 44(22): 54-55 doi:  10.3778/j.issn.1002-8331.2008.22.015

ZHANG Z, WANG H Q. Improved algorithm of Mel-frequence cepstral coefficients in characteristics extraction based on voice signed[J]. Computer Engineering and Applications, 2008, 44(22): 54-55 doi:  10.3778/j.issn.1002-8331.2008.22.015
[13] BAHOURA M. Pattern recognition methods applied to respiratory sounds classification into normal and wheeze classes[J]. Computers in Biology and Medicine, 2009, 39(9): 824-843 doi:  10.1016/j.compbiomed.2009.06.011
[14] 雷开友. 粒子群算法及其应用研究[D]. 重庆: 西南大学, 2006: 23-72
[15] 纪震. 粒子群算法及应用[M]//计算机理论基础与应用丛书. 北京: 科学出版社, 2009: 16-29
[16] 李爱国, 覃征, 鲍复民, 等. 粒子群优化算法[J]. 计算机工程与应用, 2002, 38(21): 1-3 doi:  10.3321/j.issn:1002-8331.2002.21.001

LI A G, QIN Z, BAO F M, et al. Particle swarm optimization algorithms[J]. Computer Engineering and Applications, 2002, 38(21): 1-3 doi:  10.3321/j.issn:1002-8331.2002.21.001
[17] 邢通, 陈金豹, 翟国富, 等. 星载电子设备多余物检测系统[J]. 电子测量与仪器学报, 2013, 27(4): 359-363

XING T, CHEN J B, ZHAI G F, et al. Automatic detection system of loose particle for space-borne electronic equipment[J]. Journal of Electronic Measurement and Instrument, 2013, 27(4): 359-363