[1] 吴伟仁, 于登云. 深空探测发展与未来关键技术[J]. 深空探测学报, 2014, 1(1): 5-17 doi:  10.15982/j.issn.2095-7777.2014.01.003

WU W R, YU D Y. Deep space exploration development and future key technologies[J]. Journal of Deep Space Exploration, 2014, 1(1): 5-17 doi:  10.15982/j.issn.2095-7777.2014.01.003
[2] 于登云, 马继楠. 中国深空探测进展与展望[J]. 前瞻科技, 2022, 1(1): 17-27

YU D Y, MA J N. Progress and prospect of deep space exploration in China[J]. Prospective Science and Technology, 2022, 1(1): 17-27
[3] 刘继忠, 胡朝斌, 庞涪川, 等. 深空探测发展战略研究[J]. 中国科学: 技术科学, 2020, 50(9): 1126-1139 doi:  10.1360/SST-2020-0207

LIU J Z, HU C B, PANG F C, et al. Research on the development strategy of deep space exploration[J]. SCIENTIA SINICA Technologica, 2020, 50(9): 1126-1139 doi:  10.1360/SST-2020-0207
[4] AFSHINNEKOO E, SCOTT R T, MACKAY M J, et al. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration[J]. Cell, 2020, 183(5): 1162-1184 doi:  10.1016/j.cell.2020.10.050
[5] XU L, ZOU Y L, JIA Y Z. China’s planning for deep space exploration and lunar exploration before 2030[J]. Space Science, 2018, 38(5): 591-592
[6] 王晓海. 空间在轨服务技术及发展现状与趋势[J]. 卫星与网络, 2016(3): 70-76 doi:  10.3969/j.issn.1672-965X.2016.03.009
[7] 李岩, 党常平. 空间在轨服务技术进展[J]. 兵工自动化, 2012, 31(5): 79-82

LI Y, DANG C P. Advances in space-on-orbit service technology[J]. Ordnance Industry Automation, 2012, 31(5): 79-82
[8] LI W J, CHENG D Y, LIU X G, et al. On-orbit service (OOS) of spacecraft: a review of engineering developments[J]. Progress in Aerospace Sciences, 2019, 108: 32-120 doi:  10.1016/j.paerosci.2019.01.004
[9] LI Y, CAI Y, XU G, et al. On-orbit service system based on orbital servicing vehicle[C]//2nd International Conference on Electrical, Computer Engineering and Electronics. Atlantis Press, 2015: 894-898
[10] 姜宏操. 空间飞行器三维微重力模拟技术[D]. 哈尔滨: 哈尔滨工业大学, 2021: 1-4
[11] 齐乃明, 张文辉, 马静, 等. 空间微重力地面模拟试验系统智能控制器设计[J]. 哈尔滨工业大学学报, 2012, 44(1): 17-21 doi:  10.11918/j.issn.0367-6234.2012.01.004

QI N M, ZHANG W H, MA J, et al. Intelligent controller design of ground simulation test system for three-dimensional spatial microgravity environment[J]. Journal of Harbin Institute of Technology, 2012, 44(1): 17-21 doi:  10.11918/j.issn.0367-6234.2012.01.004
[12] 齐乃明, 高九州, 周启航, 等. 空间零重力地面模拟系统的滑模变结构控制[J]. 自动化与仪表, 2011, 26(10): 1-3 doi:  10.3969/j.issn.1001-9944.2011.10.001

QI N M, GAO J Z, ZHOU Q H, et al. Sliding model variable structure control of ground simulation test system for spatial microgravity environment[J]. Automation & Instrumentation, 2011, 26(10): 1-3 doi:  10.3969/j.issn.1001-9944.2011.10.001
[13] 夏飞扬, 樊可清. 基于运动控制的加减速阶段减振方法研究[J]. 测控技术, 2021, 40(3): 135-140

XIA F Y, FAN K Q. Vibration reduction methods in acceleration and deceleration based on motion control[J]. Measurement & Control Technology, 2021, 40(3): 135-140
[14] JEON J W, HA Y Y. A generalized approach for the acceleration and deceleration of industrial robots and CNC machine tools[J]. IEEE Transactions on Industrial Electronics, 2000, 47(1): 133-139 doi:  10.1109/41.824135
[15] 刘亚杰. 卫星扰动与振动特性模拟技术研究[D]. 长春: 长春理工大学, 2015: 42-53
[16] 宗旭. 某型卫星结构分析与减振优化[D]. 长沙: 国防科技大学, 2017: 1-8
[17] 背户一登. 动力吸振器及其应用[M]. 任明章, 译. 北京: 机械工业出版社, 2013: 25-37