《万方数据-数字化期刊群》全文上网期刊
CNKI《中国学术期刊(网络版)》全文收录期刊
《中文科技期刊数据库》(维普网)全文收录期刊
超星期刊域出版平台、博看网全文收录期刊
日本JST中文数据库来源期刊
美国《乌利希期刊指南(网络版)》(Ulrichsweb)收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间辐射环境工程的现状及发展趋势

沈自才, 闫德葵

沈自才, 闫德葵. 空间辐射环境工程的现状及发展趋势[J]. 航天器环境工程, 2014, 31(3): 229-240. doi: 10.12126/see.2014.03.001
引用本文: 沈自才, 闫德葵. 空间辐射环境工程的现状及发展趋势[J]. 航天器环境工程, 2014, 31(3): 229-240. doi: 10.12126/see.2014.03.001
Shen Zicai,. Present status and prospects of space radiation environmental engineering[J]. Spacecraft Environment Engineering, 2014, 31(3): 229-240. doi: 10.12126/see.2014.03.001
Citation: Shen Zicai,. Present status and prospects of space radiation environmental engineering[J]. Spacecraft Environment Engineering, 2014, 31(3): 229-240. doi: 10.12126/see.2014.03.001

空间辐射环境工程的现状及发展趋势

doi: 10.12126/see.2014.03.001
基金项目: 

国家自然科学基金项目(编号:41174166)

详细信息
  • 中图分类号: V520.6;V416.5

Present status and prospects of space radiation environmental engineering

  • 摘要: 空间辐射环境是航天器在轨运行所面临的重要环境要素之一,因其诱发的单粒子效应、总剂量效应、位移损伤效应、表面充放电效应、内带电效应等既可引起航天器材料、器件、结构等在轨损伤、性能退化甚至失效,然而又可以利用其开展空间育种等活动。文章从空间辐射环境与模型、空间辐射效应及机理、空间辐射环境与效应试验的评价标准、空间辐射环境效应试验方法、空间辐射环境与效应地面模拟试验设备、空间辐射环境与效应数值模拟、空间辐射环境与效应飞行试验及抗辐射加固技术等角度对空间辐射环境工程的现状进行了评述,进而提出了空间辐射环境工程各个领域的发展趋势。
  • [1] 赵雪, 蔡震波. 空间环境与卫星在轨异常分析[C]//中 国空间科学学会空间探测专业委员会第十七次学术会 议论文集. 乌鲁木齐, 2004-09-01: 43-49
    [2] 沈自才. 空间辐射环境工程[M]. 北京: 中国宇航出版 社, 2013: 1-3
    [3] Sawyer D M, Vette J I. AP-8 trapped proton environment for solar maximum and solar minimum, NSSDC/WDCA- R&S 76-06[R], 1976
    [4] Meffert J D, Gussenhoven M S. CRRESPRO documentation, PL-TR-94-2218[R]. Phillips Laboratory: Environmental Research Papers 1158, 1994
    [5] Heynderickx D, Kruglanski M, Pierrard V, et al. A low altitude trapped proton model for solar minimum conditions based on SAMPEX/PET data[J]. IEEE Trans Nucl Sci, 1999, 46: 1475-1480
    [6] Vette J I. The AE-8 trapped electron model environment, NSSDC/WDC-A-R&S 91-24[R], 1991
    [7] Brautigam, D H, Bell J T. CRRESELE documentation, PL-TR-95-2128[R]. Phillips Laboratory: Environmental Research Papers 1178, 1995
    [8] Vampola A L. Outer zone energetic electron environment update[C]//1997 Conference on the High Energy Radiation Background in Space. Snowmass, CO, USA, 1997: 101-104
    [9] Boscher D M, Bourdarie S A, Friedel R H W, et al. A model for the geostationary electron environment: POLE[J]. IEEE Trans Nucl Sci, 2003, 50(6): 2278 -2283
    [10] Sicard-Piet A, Bourdarie S, Boscher D, et al. A model for the geostationary electron environment: POLE, from 30 keV to 5.2 MeV[J]. IEEE Trans Nucl Sci, 2006, 53(4): 1844-1850
    [11] Sicard-Piet A, Bourdarie S, Boscher D, et al. A new international geostationary electron model: IGE-2006, from 1 keV to 5.2 MeV[J]. Space Weather, 2008, 6: S07003
    [12] Daly E J, Evans H D R. Problems in radiation environment models at low altitude[J]. Radiation Measurement, 1996, 26(3): 363-368
    [13] Panasyuk M I. Model presentation of radiation fluxes in space[J]. Radiation Measurement, 1996, 26(3): 303-307
    [14] Mikhail I P. Empirical and theoretical models of terrestrial radiation[C]//Workshop on the Earth's Trapped Particle Environment. American Inst Physics Conf Proc 383. AIP Press: Woodbury. NY, 1996
    [15] King J H. Solar proton fluences for 1977-1983 space missions[J]. J Spacecraft and Rockets, 1974, 11: 401-408
    [16] Feynman J, Ruzmaikin A, Berdichevsky V. The JPL proton fluence model: an update[J]. J Atmospheric and Solar Terrestrial Physics, 2002, 64: 169-1686
    [17] Xapsos M A, Summers G P, Burke E A. Extreme value analysis of solar energetic proton peak fluxes[J]. Solar Physics, 1998, 183:157-164
    [18] O'Neill P M. Badhwar - O'Neill galactic cosmic ray model update based on advanced composition explorer (ACE) energy spectra from 1997 to present[J]. Advances in Space Research, 2006, 37(9): 1727-1733
    [19] Dietrich W F. CREME96: a revision of the cosmic ray effects on micro-electronics code[J]. IEEE Trans Nucl Sci, 1997, 44(6): 2150-2160
    [20] Nymmik R A, Panasyuk M I, Pervaja T I, et al. A model of galactic cosmic ray fluxes[J]. Nucl Tracks Radiat Meas, 1992, 20: 427-429
    [21] ISO TS 15391: 2004 Space environment (natural and artificial): Probabilistic model for fluencies and peak fluxes of solar energetic particles: Part I Protons[S]
    [22] ISO 15390: 2004(E) Space environment (natural and artificial): Galactic cosmic ray model[S]
    [23] Divine N, Garrett H B. Charged particle distribution in Jupiter's magnetosphere[J]. J Geophys Res, 1983, 88: 6889-6903
    [24] Sicard-Piet A, Bourdarie S, Krupp N. JOSE: a new Jovian specification environment model[J]. IEEE Trans Nucl Sci, 2011, 58(3): 923-931
    [25] Jun I, Garrett H B, Evans R W. High-energy trapped particle environments at Jupiter: an update[J]. IEEE Trans Nucl Sci, 2005, 52(6): 2281-2286
    [26] Andrew H S, Len A. Handbook of radiation effects[M]. Oxford University Press, 2002
    [27] ISO 21348: 2007 Space environment (natural and artificial): Process for determining solar irradiances[S]
    [28] MIL-STD-1890 Space environment for USAF space vehicles[S]
    [29] ECSS-E-10-04C Space engineering-space environment[S]
    [30] ECSS-E-ST-10-12C Space engineering: Methods for the calculation of radiation received and its effects, and a policy for design margins[S]
    [31] ECSS-Q-ST-70-06C Space product assurance: Particle and UV radiation testing for space materials[S]
    [32] ASTM E512-94 Standard practice for combined, simulated space environment testing of thermal control materials with electromagnetic and particulate radiation[S]
    [33] MIL-STD-750 Test method for semiconductor devices method 1080: Single event burnout and single event gate rupture test[S]
    [34] ESCC 25100 Single event effects test method and guidelines[S]
    [35] MIL-STD-883 Test method standard microcircuits: 1019.4 ionizing radiation (total dose) test procedure[S]
    [36] ASTM F1892-06 Standard guide for ionizing radiation (total dose) effects testing of semiconductor devices[S]
    [37] ESCC 22900 Total dose steady state irradiation test method[S]
    [38] ESCC 23800 Electrostatic discharge sensitivity test method[S]
    [39] ECSS-E-20-06 Standard on spacecraft charging: Environment-induced effects on the electrostatic behavior of space systems[S]
    [40] NASA TP-2361 Design guidelines for assessing and controlling spacecraft charging effects[R]
    [41] NASA-HDBK-4002A Mitigating in-space charging effects: a guideline[S]
    [42] ISO 23038 Space systems: Space solar cells: Electron and proton irradiation test methods[S]
    [43] ASTM E1854-2007 Standard practice for ensuring test consistency in neutron-induced displacement damage of electronic parts[S]
    [44] Solar cell radiation handbook: GaAs cell, JPL publication 96-9[R]
    [45] GJB/Z 24—1991 地球辐射带[S]
    [46] GJB 2502.5 航天器热控涂层试验方法[S], 2006
    [47] GJB 6777—2009 军用电子元器件252Cf 源单粒子效 应实验方法[S]
    [48] GJB 7242—2011 单粒子效应试验方法和程序[S]
    [49] GJB 762.2—1989 半导体器件辐射加固试验方法γ 总 剂量辐照方法[S]
    [50] QJ 10005—2008 宇航用半导体器件重离子单粒子效 应试验指南[S]
    [51] QJ 10004—2008 宇航用半导体器件总剂量辐照试验 方法[S]
    [52] 吴宜勇, 岳龙, 胡建民, 等. 位移损伤剂量法评估空 间GaAs/Ge 太阳电池辐射损伤过程[J]. 物理学报, 2011, 60(9): 723-732 Wu Yiyong, Yue Long, Hu Jianmin, et al. Radiation damage of space GaAs/Ge solar cells evaluated by displacement damage dose[J]. Acta Physica, 2011, 60(9): 723-732
    [53] 吴宜勇, 岳龙, 胡建民, 等. 等效位移损伤剂量法预 测GaInP2/GaAs/Ge 三结电池在轨性能退化规律[J]. 航天器环境工程, 2011, 28(4): 329-336 Wu Yiyong, Yue Long, Hu Jianmin, et al. Predictions of degradation of electrical properties of GaInP2/GaAs/Ge solar cell using equivalent displacement-damage-dose technique[J]. Spacecraft Environment Engineering, 2011, 28(4): 329-336
    [54] Messenger S R, Summers G P, Burke E A, et al. Modeling solar cell degradation in space: a comparison of the NRL displacement damage dose and the JPL equivalent fluence approaches[J]. Progress in Photovoltaics: Research and Applications, 2001, 9(2): 103-121
    [55] Bland A S. LDEF materials overview, NASA1993- 28255[R]
    [56] Wilkes D R, Zwiener J M. Science data report for the optical properties monitor (OPM) experiment. NASA/CR-2001-210881[R]
    [57] Harvey G A, Humes D H, Kinard W H. Mir environmental effects payload and returned Mir solar panel cleanliness, NASA/CR-2004-0086988[R]
    [58] Kim K. de Groh, Bruce A B. NASA Glenn Research Center's Materials International Space Station Experiment (MISSE 1-7), NASA/TM-2008-215482[R]
    [59] Barry H G, Dale C F. Solar array module plasma interactions experiment (SAMPIE): science and technology objectives[J]. Journal of Spacecraft and Rockets, 1993, 30(4): 488-493
    [60] Ignaczak L R, Haley F A, Domino E J, et al. The plasma interaction experiment/PIX/: description and flight qualification test program, AIAA 1978-0674[R]
    [61] Mandell M J, Katz I, Jongeward G A, et al. Computer simulation of plasma electron collection by PIX-II (solar array-space plasma interaction), AIAA1985-0386[R]
    [62] Stakkestad K, Fennessey R. SCATHA mission termination report, NASA1993-24725[R]
    [63] Sperry D, Pantazis J A, Okun P, et al. Detailed component design for a Compact Environmental Anomaly Sensor (CEASE), ADA 261729[R]
    [64] Crabb R L. In-flight Hipparcos solar array performance degradation after three and a half years in GTO[C]//Second European Conference on Radiation and its Effects on Components and Systems. Noordwijk, The Netherlands, 1994: 182-190
    [65] Aburaya T, Hisamatsu T, Matsuda S. Analysis of 10 years' flight data of solar cell monitor on ETS-V[J]. Solar Energy Materials and Solar Cells, 2001, 68(1): 15-22
    [66] Matsuda S, Imaizumi M, Anzawa O, et al. Radiation effects in space on solar cells developed for terrestrial use demonstrated by MDS-1[C]//Proceedings of 3rd World Conference on Photovoltaic Energy Conversion. Osaka, Japan, 2003: 642-645
    [67] 薛玉雄, 曹洲, 杨世宇, 等. 基于Space Radiation 5.0 软件平台分析典型GEO 空间辐射环境[J]. 航天器环 境工程, 2007, 24(5): 291-295 Xue Yuxiong, Cao Zhou, Yang Shiyu, et al. Analyses of typical GEO space radiation environment using software package Space Radiation 5.0[J]. Spacecraft Environment Engineering, 2007, 24(5): 291-295
    [68] Soriano T, Pelissou P, Laget P. SYSTEMA GTD/INCA[C]//Proc of 2012 ESA Workshop on Aerospace EMC. Venice: IEEE Conf Publ, 2012-05: 1-6
    [69] Heynderickx D Q, Speelman B E. ESA's Space Environment Information System (SPENVIS): a www interface to models of the space environment and its effects, AIAA 2000-0371[R]
    [70] Mandell M J, Katz I, Hilton J M, et al. NASCAP-2K: spacecraft charging analysis code for the 21st century, AIAA 2001-0957[R]
    [71] Sorensen J, Rodgers D J, Ryden K A, et al. ESA's tools for internal charging[J]. IEEE Trans Nucl Sci, 2000, 491-497
    [72] Chock R. SAVANT solar array verification and analysis tool demonstrated, NASA 2005-0192279[R]
    [73] 宋明龙, 朱海元, 章生平. 卫星抗辐射加固技术[J]. 上海航天, 2001, 18(2): 56-60 Song Minglong, Zhu Haiyuan, Zhang Shengping. Radiation-resistance and reinforce technology of satellite[J]. Aerospace Shanghai, 2001, 18(2): 56-60
    [74] 蔡震波. 新型航天器抗辐射加固技术的研究重点[J]. 航天器环境工程, 2010, 27(2): 173-176 Cai Zhenbo. The radiation hardening techniques for new generation spacecraft[J]. Spacecraft Environment Engineering, 2010, 27(2): 173-176
  • [1] 孙瑞斌, 黄育群, 马继魁, 刘耀峰, 柳煜玮, 倪招勇.  火星探测器再入RCS喷流干扰效应数值模拟研究 . 航天器环境工程, 2023, 40(4): 331-337. doi: 10.12126/see.2023060
    [2] 柳晓宁, 任杰, 朱熙, 张羽, 廖韬, 郝亚新.  石英灯阵高温试验环境换热特性仿真分析 . 航天器环境工程, 2022, 39(1): 26-32. doi: 10.12126/see.2022.01.004
    [3] 黄圳, 李志慧, 孙敬文, 牛科研, 汪东莉, 赵长颖.  3D打印赋形微小流道集热器内层流换热特性数值模拟与试验研究 . 航天器环境工程, 2022, 39(1): 47-54. doi: 10.12126/see.2022.01.007
    [4] 王会斌, 呼延奇, 郑悦, 王华.  航天器空间辐射效应分析技术现状与思考 . 航天器环境工程, 2022, 39(4): 427-435. doi: 10.12126/see.2022.04.015
    [5] 路子威, 季启政, 唐旭, 冯娜, 韩炎晖, 梅飞, 李振阳.  航天服材料的静电吸附效应地面试验研究 . 航天器环境工程, 2022, 39(5): 533-538. doi: 10.12126/see.2022.05.013
    [6] 刘佳强, 张振龙, 赵班池, 刘洋, 王慧元, 高辉.  地球内辐射带核心区环境特征分析及质子屏蔽的蒙特卡罗模拟 . 航天器环境工程, 2022, 39(4): 355-360. doi: 10.12126/see.2022.04.004
    [7] 许振龙, 伍攀峰, 李杰, 王明贺.  一种基于COTS器件的SiP微系统的抗总剂量效应加固设计与试验评估 . 航天器环境工程, 2022, 39(3): 248-254. doi: 10.12126/see.2022.03.005
    [8] 泉浩芳, 张小达, 周玉霞, 陆静.  空间碎片减缓策略分析及相关政策和标准综述 . 航天器环境工程, 2019, 36(1): 7-14. doi: 10.12126/see.2019.01.002
    [9] 花雨, 毕海林, 孙伟, 孙立臣, 孟冬辉, 王旭迪.  空间站舱外泄漏羽流场数值模拟 . 航天器环境工程, 2019, 36(4): 313-317. doi: 10.12126/see.2019.04.002
    [10] 李鹏, 刘凯, 辛敏成, 赵楠, 邹田骥, 张海涛.  NAND闪存固态硬盘空间环境效应分析及测试系统设计 . 航天器环境工程, 2018, 35(6): 581-587. doi: 10.12126/see.2018.06.012
    [11] 余永涛, 陈毓彬, 水春生, 王小强, 冯发明, 费武雄.  大容量抗辐射加固SRAM器件单粒子效应试验研究 . 航天器环境工程, 2018, 35(5): 462-467. doi: 10.12126/see.2018.05.010
    [12] 张小达, 李晔, 向树红, 吴永亮, 冯铁惠.  航天器环境试验基线与剪裁技术:第一部分试验基线由来 . 航天器环境工程, 2016, 33(2): 121-126. doi: 10.12126/see.2016.02.002
    [13] 靳旭红, 俞继军, 黄飞, 程晓丽, 黄育群.  航天器表面环境散射返回流污染数值模拟和影响因素分析 . 航天器环境工程, 2016, 33(3): 275-281. doi: 10.12126/see.2016.03.008
    [14] 任飞, 纪志坡, 张国帅, 万成安.  卫星载荷二次电源用MOSFET的抗辐射设计及验证 . 航天器环境工程, 2016, 33(5): 545-549. doi: 10.12126/see.2016.05.016
    [15] 王浩, 黄小凯, 杨晓宁, 陈金明.  航天器电子产品加速试验技术现状及探讨 . 航天器环境工程, 2015, 32(5): 509-514. doi: 10.12126/see.2015.05.010
    [16] 李明, 彭雄伟, 祝耀昌.  GJB 150.3A中高温试验程序剖析(二):高温日循环数据的选用和标准应用分析 . 航天器环境工程, 2015, 32(6): 607-611. doi: 10.12126/see.2015.06.007
    [17] 沈自才1, 李衍存2, 丁义刚1航天材料紫外辐射效应地面模拟试验方法 . 航天器环境工程, 2015, 32(1): 43-48. doi: 10.12126/see.2015.01.008
    [18] 龚自正1,2, 徐坤博2, 牟永强2, 曹燕2空间碎片环境现状与主动移除技术 . 航天器环境工程, 2014, 31(2): 129-135. doi: 10.12126/see.2014.02.003
    [19] 高欣1,3, 杨生胜1,3, 冯展祖2,3, 张雷2,3空间CCD图像传感器辐射损伤评估方法 . 航天器环境工程, 2013, 30(6): 596-601. doi: 10.12126/see.2013.06.006
    [20] 刘宇明.  空间紫外辐射环境及效应研究 . 航天器环境工程, 2007, 24(6): 359-365.
  • 加载中
计量
  • PDF下载量:  17327
  • 文章访问数:  14492
  • HTML全文浏览量:  31
文章相关
  • 中图分类号:  V520.6;V416.5
  • 收稿日期:  2014-04-04
  • 修回日期:  2014-06-16

空间辐射环境工程的现状及发展趋势

doi: 10.12126/see.2014.03.001
    基金项目:

    国家自然科学基金项目(编号:41174166)

  • 中图分类号: V520.6;V416.5

摘要: 空间辐射环境是航天器在轨运行所面临的重要环境要素之一,因其诱发的单粒子效应、总剂量效应、位移损伤效应、表面充放电效应、内带电效应等既可引起航天器材料、器件、结构等在轨损伤、性能退化甚至失效,然而又可以利用其开展空间育种等活动。文章从空间辐射环境与模型、空间辐射效应及机理、空间辐射环境与效应试验的评价标准、空间辐射环境效应试验方法、空间辐射环境与效应地面模拟试验设备、空间辐射环境与效应数值模拟、空间辐射环境与效应飞行试验及抗辐射加固技术等角度对空间辐射环境工程的现状进行了评述,进而提出了空间辐射环境工程各个领域的发展趋势。

English Abstract

沈自才, 闫德葵. 空间辐射环境工程的现状及发展趋势[J]. 航天器环境工程, 2014, 31(3): 229-240. doi: 10.12126/see.2014.03.001
引用本文: 沈自才, 闫德葵. 空间辐射环境工程的现状及发展趋势[J]. 航天器环境工程, 2014, 31(3): 229-240. doi: 10.12126/see.2014.03.001
Shen Zicai,. Present status and prospects of space radiation environmental engineering[J]. Spacecraft Environment Engineering, 2014, 31(3): 229-240. doi: 10.12126/see.2014.03.001
Citation: Shen Zicai,. Present status and prospects of space radiation environmental engineering[J]. Spacecraft Environment Engineering, 2014, 31(3): 229-240. doi: 10.12126/see.2014.03.001
参考文献 (74)

目录

    /

    返回文章
    返回