基于多尺度模拟的航天器用镧锶锰氧热控涂层光吸收性能研究

Multiscale simulation-based investigation of optical absorption properties of lanthanum strontium manganese oxide thermal control coatings for spacecraft

  • 摘要: 热控涂层是对航天器进行温度控制的重要手段。通过建立多尺度模拟体系,可以更深入理解新型热控材料的物理化学性质。针对La0.75Sr0.25MnO3(LSMO)热控涂层,文章提出一种结合原子尺度与微纳尺度的多尺度设计方法系统研究其光吸收性能。首先,利用第一性原理计算方法,对LSMO材料的晶体结构进行了优化,并确定了其重要光学常数;然后,采用时域有限差分(FDTD)法对LSMO涂层在不同厚度下的光吸收特性进行了模拟。研究发现,LSMO涂层在太阳光谱区间内展现出高效的光吸收能力;并且当涂层厚度超过1 μm时,其光吸收效率达到稳定状态。所做研究为揭示新型镧锶锰氧涂层的光学特性提供了理论支持,对于航天器热控涂层的设计及应用开发具有参考意义。

     

    Abstract: Thermal control coatings serve as an important technology for spacecraft temperature management and regulation. The establishment of a multi-scale simulation framework allows for a deeper understanding of the physical and chemical properties of novel thermal control materials. A multi-scale design approach combining atomic and micro/nano scales has been developed in this study to investigate the optical absorption properties of La0.75Sr0.25MnO3 (LSMO) thermal control coatings. Initially, first-principles calculations were employed to optimize the crystal structure of LSMO material and determine its critical optical constants. Subsequently, the finite-difference time-domain (FDTD) method was used to simulate the optical absorption characteristics of LSMO coatings at various thicknesses. The results demonstrate that LSMO coatings exhibit high-efficiency optical absorption across the solar spectrum, and the absorption efficiency reaches a steady state when coating thicknesses exceed 1 μm. The simulation methods used in this study provide theoretical support for revealing the optical properties of novel lanthanum strontium manganese oxide coatings, and offer a reference for the design and application development of thermal control coatings for spacecraft.

     

/

返回文章
返回