黄震, 赵建贺, 李志杰. 返回舱再入过程密封舱气体泄漏计算研究[J]. 航天器环境工程, 2017, 34(4): 415-418 DOI: 10.12126/see.2017.04.013
引用本文: 黄震, 赵建贺, 李志杰. 返回舱再入过程密封舱气体泄漏计算研究[J]. 航天器环境工程, 2017, 34(4): 415-418 DOI: 10.12126/see.2017.04.013
HUANG Zhen,. Leakage of a sealed cabin in re-entry flight[J]. Spacecraft Environment Engineering, 2017, 34(4): 415-418. DOI: 10.12126/see.2017.04.013
Citation: HUANG Zhen,. Leakage of a sealed cabin in re-entry flight[J]. Spacecraft Environment Engineering, 2017, 34(4): 415-418. DOI: 10.12126/see.2017.04.013

返回舱再入过程密封舱气体泄漏计算研究

Leakage of a sealed cabin in re-entry flight

  • 摘要: 为分析返回舱再入过程中密封舱漏孔内外压差,并对漏孔变流量充气过程进行研究,采用离散化分析方法将返回舱再入过程分成若干个阶段,针对容积为14 m3的密封舱和面积为10 cm2的漏孔,计算并获得了密封舱内外压差、漏孔质量流率、漏孔流速等参数在50~5 km范围内随高度下降的变化规律。结果表明:在高度5 km开伞时刻,漏孔质量流率达到最大值0.134 kg/s,舱内外压差趋近于最大值,约20 172 Pa;返回舱下降过程中漏孔流速在148.4~181.5 m/s之间,处于亚声速区;漏孔气体流速与漏孔面积大小无关,仅与漏孔内外压力及漏孔进口空气密度有关。以上研究结果可为密封舱结构强度设计、伞舱弹伞设计提供参考。

     

    Abstract: The pressure difference of inside and outside the orifice of a sealed cabin in the re-entry flight is studied, and the variable gas charging process of the orifice is analyzed. A discretized analytical method is used for the calculation of a sealed cabin with a volume of 14 m3 and an orifice with an area of 10 cm2. The pressure difference of the sealed cabin, the mass flow rate, and the gas velocity in the orifice against the time or height are obtained. The results show that at the height of 5 km, the mass flow rate reaches its highest value of 0.134 kg/s; the pressure difference approaches the maximum; the gas velocity ranges between 148.4~181.5 m/s(in the subsonic zone); and the gas velocity in the orifice is related only with the inlet and outlet pressure of the orifice and the inlet gas density, while regardless of the area of the orifice. The above results may provide a reference for the design of capsule structures and parachute-module systems.

     

/

返回文章
返回